Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            This work presents a prototype of a wireless, flexible, self-powered sensor used to analyze head impact kinematics relevant to concussions, which are frequent in high contact sports. Two untethered, paper-thin, and flexible sensing devices with piezoelectric-like behavior are placed around the neck of a human head substitute and used to monitor stress/strain in this region during an impact. The mechanical energy exerted by an impact force –varied in locations and magnitudes– is converted to pulses of electric energy which are transmitted wirelessly to a smart device for storage and analysis. The wireless prototype system is presented using a microcontroller with an integrated Bluetooth Low Energy module. The static and dynamic characteristics of the transmitted signal are then compared to signals from accelerometers embedded in a head substitute, to map the sensor’s output to the angular velocity and acceleration during impacts. It is demonstrated that using only two sensors is enough to detect impacts coming from any direction; and that placing multiple external sensors around the neck region could provide accurate information on the dynamics of the head, during a collision, which other sensors fail to capture.more » « less
- 
            A microfluidic thermal mass flow sensor based on planar micro-machining technology and a phase-change material is designed, fabricated, and characterized. The sensor configuration uses a small patch of vanadium dioxide (VO 2 ) thin film as the sensing element closely placed in the down streaming direction of the heat source. By operating the VO 2 sensor in the phase transition region, no thermal insulation structure is required due to the ultra-high thermal sensitivity in this region. The characteristic 3-order resistance change, from 290 kΩ to 290 Ω, is observed during the full heating and cooling cycles by using both substrate heating and resistive heating methods. The equivalent maximum temperature coefficient of resistance (TCR) is calculated to be −0.37 K −1 in the cooling cycle and −0.43 K −1 in the cooling and heating cycle, respectively. The sensing operation principle is determined to follow the major cooling curve to avoid falling into minor loops and to secure high TCR. The resistance of VO 2 is monitored under flow rates ranging from 0 to 37.8 μL s −1 with the maximum sensitivity of 1.383%/(μL min −1 ). The studies presented in this research may enable the application of utilizing nonlinear metamaterial in microfluidic flow sensors with orders of magnitude improvement in sensitivity.more » « less
- 
            Abstract Our knowledge of traumatic brain injury has been fast growing with the emergence of new markers pointing to various neurological changes that the brain undergoes during an impact or any other form of concussive event. In this work, we study the modality of deformations on a biofidelic brain system when subject to blunt impacts, highlighting the importance of the time-dependent behavior of the resulting waves propagating through the brain. This study is carried out using two different approaches involving optical (Particle Image Velocimetry) and mechanical (flexible sensors) in the biofidelic brain. Results show that the system has a natural mechanical frequency of$$\sim $$ 25 oscillations per second, which was confirmed by both methods, showing a positive correlation with one another. The consistency of these results with previously reported brain pathology validates the use of either technique, and establishes a new, simpler mechanism to study brain vibrations by using flexible piezoelectric patches. The visco-elastic nature of the biofidelic brain is validated by observing the the relationship between both methods at two different time intervals, by using the information of the strain and stress inside the brain from the Particle Image Velocimetry and flexible sensor, respectively. A non-linear stress-strain relationship was observed and justified to support the same.more » « less
- 
            Abstract The present work demonstrates the development of a flexible, self-powered sensor patch that can be used to estimate angular acceleration and angular velocity, which are two essential markers for predicting concussions. The device monitors the dynamic strain experienced by the neck through a thin, polypropylene-based ferroelectret nanogenerator that produces a voltage pulse with profile proportional to strain. The intrinsic property of this device to convert mechanical input to electrical output, along with its flexibility and$$\sim$$ 100$$\mu$$ m thickness makes it a viable and practical device to be used as a wearable patch for athletes in high-contact sports. After processing the dynamic behavior of the produced voltage, a correspondence between the electric signal profile and the measurements from accelerometers integrated inside a human head and neck substitute was found. This demonstrates the ability of obtaining an electronic signature that can be used to extract head kinematics during collision, and creates a marker that could be used to detect concussions. Unlike accelerometer-based current trends on concussion-detection systems, which rely on sensors integrated in the athlete’s helmet, the flexible patch attached to the neck would provide information on the dynamics of the head movement, thus eliminating the potential of false readings from helmet sliding or peak angular acceleration.more » « less
- 
            VO2-based MEMS tunable optical shutters are demonstrated. The design consists of a VO2-based cantilever attached to a VO2-based optical window with integrated resistive heaters for individual mechanical actuation of the cantilever structure, tuning of the optical properties of the window, or both. Optical transmittance measurements as a function of current for both heaters demonstrates that the developed devices can be used as analog optical shutters, where the intensity of a light beam can be tuned to any value within the range of VO2phase transition. A transmittance drop off 30% is shown for the optical window, with tuning capabilities greater than 30% upon actuation of the cantilever. Unlike typical mechanical shutters, these devices are not restricted to binary optical states. Optical modulation of the optical window is demonstrated with an oscillating electrical input. This produces a transmittance signal that oscillates around an average value within the range off VO2’s phase transition. For an input current signal with fixed amplitude (fel= 0.28 Hz), tuned to be at the onset of the phase transition, a transmittance modulation of 14% is shown. Similarly, by modulating the DC-offset, a transmittance modulation of VO2along the hysteresis is obtained.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
